Abstract

Film cooling performance of two hole geometries is evaluated on a flat plate surface with steady-state IR (infrared thermography) technique. The base geometry is a simple cylindrical hole design inclined at 30° from the surface with pitch-to-diameter ratio of 3.0. The second geometry is an anti-vortex design where the two side holes, also of the same diameter, branch out from the root at 15° angle. The pitch-to-diameter ratio is 6.0 between the main holes. The mainstream Reynolds number is 3110 based on the coolant hole diameter. Two secondary fluids — air and carbon-dioxide — were used to study the effects of coolant-to-mainstream density ratio (DR = 0.95 and 1.45) on film cooling effectiveness. Several blowing ratios in the range 0.5 –4.0 were investigated independently at the two density ratios. Results indicate significant improvement in effectiveness with anti-vortex holes compared to cylindrical holes at all the blowing ratios studied. At any given blowing ratio, the anti-vortex hole design uses 50% less coolant and provides at least 30–40% higher cooling effectiveness. The use of relatively dense secondary fluid improves effectiveness immediately downstream of the anti-vortex holes but leads to poor performance downstream.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call