Abstract

Film-wise and drop-wise condensation experiments were carried out at atmospheric pressure varying the condensing plates, their inclinations and orientations (upward or downward facing), and the air concentrations. As expected, dropwise condensation showed much higher heat transfer rates than corresponding film-wise condensation in the pure steam cases. However, with the presence of air, both modes of condensation showed similar heat transfer rates due to the high thermal resistance of the air-rich layer. Both modes of condensation showed systematic decreases in heat transfer as the angle of the plate to the horizontal decreased and as the concentration of air increased. A noteworthy observation made during the tests on the plate orientation showed that condensation heat transfer rates on the upward facing plate were slightly higher than those beneath the downward facing plate in the pure steam cases but that the trends were reversed in the steam and air mixture cases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.