Abstract

The film forming kinetics and reaction mechanism of γ-GPS on low carbon steel surfaces was investigated by FTIR-ATR, AFM, NSS and theoretical calculation method. The results from experimental section indicated that the reaction of γ-GPS on low carbon steel surfaces followed the conventional reaction mechanism, which can be described as reaction (I) (Me (Metal)–OH + HO–Si → Me–O–Si + H 2O) and reaction (II) (Si–OH + Si–OH → Si–O–Si + H 2O). During film forming process, the formation of Si–O–Fe bond (reaction (I)) exhibited oscillatory phenomenon, the condensation degree of silanol monomers (reaction (II)) increased continuously. The metal hydroxyl density had significant influence on the growth mechanisms and corrosion resisting property of γ-GPS films. The results from theoretical calculation section indicated that the patterns of reaction (I) and reaction (II) were similar, involving a nucleophilic attack on the silicon center. The formation of Si–O–Fe bond (reaction (I)) was kinetically and thermodynamically preferred, which had catalytic effect on its condensation with neighboring silanol monomers (reaction (II)). Our DFT calculations were good consistent with the experimental measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.