Abstract

This work reports on the steady state fluorescence (SSF) technique for studying film formation from surfactant-free, nano-sized polystyrene (PS) latex particles prepared via emulsion polymerization. The latex films were prepared from pyrene (P)-labeled PS particles at room temperature and annealed at elevated temperatures in 5, 10, 15, 20 and 30 min time intervals above the glass transition temperature (Tg) of PS. During the annealing processes, the transparency of the film was improved considerably. Monomer and excimer fluorescence intensities, IP and IE respectively, from P were measured after each annealing step to monitor the stages of film formation. Evolution of transparency of the latex films was monitored by using photon transmission intensity, Itr. Void closure and interdiffusion stages were modeled and related activation energies were determined and found to be 10.3 and 50.3 kJ mol−1. Void closure temperatures, Tv, were determined from the minima of Itr value. Copyright © 2005 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.