Abstract
The film flow and surface renewal of highly viscous liquid on a rotating spoked disk were investigated experimentally and numerically. In practical applications, the liquid is a polycarbonate melt with very high viscosity and Newtonian behavior at low shear rates. In the experiments, a maltose solution was used. The film thickness on the rotating disk was measured by an electrical conductivity probe. The Volume of Fluid (VOF) model combined with the sliding mesh method was used to simulate the film formation process. The simulated dimensionless film thickness and the film formation process agree well with the experimental results. The film flow and surface renewal under different operation conditions were evaluated. Gravity and viscous forces dominate the process with inertia playing a marginal role. A scraper was designed to intensify transfer processes on the film significantly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.