Abstract

Understanding of microplastics transport mechanism is highly important for soil contamination and remediation. The transport behaviors of microplastics in soils are complex and influenced by various factors including soil and particle properties, hydrodynamic conditions, and biota activities. Via a microfluidic experiments we study liquid film entrainment and microplastics transport and retention during two-phase displacement in microchannels with one end connected to the air and the other connected to the liquid with suspended particles. We discover three transport patterns of microplastic particles, ranging from no deposition to particle entrapment and to particle layering within liquid films, depending on the suspension withdrawal rates and the particle volume fraction in the suspension. The general behavior of particle motion is effectively captured by the film thickness evolution which is shown to be dependent on a modified capillary number Ca0 taking into account the effects of flow velocity, particle volume fraction, and channel shape. We also provide a theoretical prediction of the critical capillary number Ca0* for particle entrapment, consistent with the experimental results. In addition, the probability of microplastics being dragged into the trailing liquid film near the gas invading front is found to be proportional to both particle volume fraction and the capillary number. This work elucidates the microplastics transport mechanism during unsaturated flow, and therefore is of theoretical and practical importance to understand the contaminant migration in many natural and engineered systems spanning from groundwater sources to water treatment facilities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.