Abstract

Far-UVC radiation between 200 and 230 nm is a promising technology for reducing airborne disease transmission. Previous work with far-UVC lamps has demonstrated the efficacy of far-UVC radiation to inactivate bacteria and viruses while presenting minimal human health hazards. While far-UVC intentionally exposes the occupied space, effectively disinfecting air between occupants, installations must still ensure that occupant eye and skin exposure is within the recommended daily limits. This study examines far-UVC-sensitive films for measuring the dose received by occupants within two real-world far-UVC installations. The film is characterized for accuracy, angular response, wavelength response, and sources of uncertainty in film response, and used to obtain individual exposure doses that account for both the non-uniform irradiance and the unique motion of individuals within the space. Dosimetry results using the films, which account for the time-weighted average exposure of an occupant, ranged from 10% to 49% of the maximum calculated stationary dose based on peak irradiance measurements. Results from this study spotlight the need to incorporate time-weighted average considerations into the design and safety assessment of far-UVC installations to ultimately operate far-UVC technology with its full potential to prevent the spread of potentially fatal infectious diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.