Abstract

The flow and heat transfer due to film cooling over a turbine nozzle guide vane, which was also cooled by internal convection, were numerically analysed under engine conditions. The time-dependent, two-dimensional, mass-averaged, Navier-Stokes (N-S) equations are solved in the physical plane based on the four-stage Runge-Kutta algorithm in the finite volume formulation. Local time stepping, variable coefficient implicit residual smoothing and a full multigrid technique have been implemented to accelerate the steady state calculations. Turbulence was simulated by the algebraic Baldwin-Lomax (B-L) model. The computed heat transfer distributions with film cooling in conjunction was successful in describing the coolant behavior over the curved suction and pressure surfaces of a turbine blade for varying blowing and temperature ratios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.