Abstract

Abstract Film cooling performance of one row of cylindrical holes integrated with saw-tooth slots was numerically studied at blowing ratios of 0.5, 1.0 1.5 and 2.0 respectively. The saw-tooth slot concept combines the advantages both of easy machining for the slot and of the high film cooling effectiveness caused by the anti-vortex induced by the shaped hole. The film holes have an inclination angles of 30°, length to diameter ratio of 4 and pitch to diameter ratio of 3. The corner angles of the saw-tooth are 60°, 90°, 120°, 150° and 180° respectively. The 180° corner angle corresponds to a standard transverse slot. The emphasis of this other is on the influence of the corner angles of the saw-tooth on film cooling effectiveness. The flow field and thermal field were obtained to explain the mechanism of film cooling performance improvement by the saw-tooth slot. The results show that the numerical data agrees with the experimental values for the cylindrical holes. Relatively small corner angles generate uniform local film cooling effectiveness and high spanwise averaged film cooling effectiveness due to the coolant ejected from the hole smoothly flowing into the slot. The effect of corner angles strongly depends on blowing ratios. The increase of x/D decreases the differences of film cooling effectiveness between various corner angles. At low blowing ratios, an anti-vortex can be found with the spanwise angle of 60° and 120°. At high blowing ratios, an anti-vortex can be found with the spanwise angle of 60°.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.