Abstract
We report a first-order like sharp surface wettability transition with varying film thickness dependent morphology in cast films of an amphiphilic triblock copolymer. Films composed of poly(2-(N-ethylperfluorooctanesulfonamido) ethyl methyl acrylate), poly(FOSM), and poly(N,N'-dimethyl acrylamide), poly(DMA), with thickness (h) in the transition-range, 200 < h < 300 nm, exhibited an abrupt hydrophobic to hydrophilic dynamic water contact angle transition. After an induction time, ti ≈ 40 to 180 s, water contact angle varied as θc ≈ 116° to 40° with an ultrafast contact angle decay time constant, [Formula: see text] ≈ -18°/s. This behavior is a result of competing heterogeneous and antagonistic effects of bumpy poly(DMA) wetting domains against a nonwetting planar poly(FOSM) background, with a "jump percolation" wetting transition when the poly(DMA) domain density reaches unity. Outside of this film thickness range, relatively shallow decreasing water contact angle gradients were observed with a monotonically increasing poly(DMA) domain area coverage with increasing film thickness in the overall range of 40 nm (hydrophobic, θc ≈ 118°) < h < 500 nm (hydrophilic, θc ≈ 8°). The optical diffuse reflectance properties of these rough surfaces exhibit an onset of diffuse reflectance maxima correlated to the transition morphology film thickness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.