Abstract

Forced convection film boiling heat transfer on a vertical 3-mm diameter and 180-mm length platinum test cylinder located in the center of the 40-mm inner diameter test channel was measured. Saturated water, and saturated and subcooled R113 were used as the test liquids that flowed upward along the cylinder in the test channel. Flow velocities ranged from 0 to 3 m s −1, pressures from 102 to 490 kPa, and liquid subcoolings for R113 from 0 to 60 K. The heat transfer coefficients for a certain pressure and liquid subcooling are almost independent of flow velocity and of a vertical position on the cylinder for the flow velocities lower than ≈1 m s −1 (the first range), and they become higher for the velocities higher than ≈1 m s −1 (the second range). Slight dependence on a vertical position being nearly proportional to z −1/4, where z is the height from the leading edge of the test cylinder, exists for the flow velocities in the second range. The heat transfer coefficients at each velocity in the first and second ranges are higher for higher pressure and liquid subcooling. Correlation for the forced convection film boiling heat transfer with radiation contribution on a vertical cylinder was derived by modifying an approximate analytical solution for a two-phase laminar boundary layer model to agree better with the experimental data. It was confirmed that the experimental data of film boiling heat transfer coefficients in water and R113 were described by the correlation within ±20% difference.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call