Abstract
Much of extremal graph theory has concentrated either on finding very small subgraphs of a large graph (Turán-type results) or on finding spanning subgraphs (Dirac-type results). In this paper, we are interested in finding intermediate-sized subgraphs. We investigate minimum degree conditions under which a graph G contains squared paths and squared cycles of arbitrary specified lengths. We determine precise thresholds, assuming that the order of G is large. This extends results of Fan and Kierstead [J. Combin. Theory Ser. B 63 (1995) 55–64] and of Komlós, Sarközy and Szemerédi [Random Structures Algorithms 9 (1996) 193–211] concerning the containment of a spanning squared path and a spanning squared cycle, respectively. Our results show that such minimum degree conditions constitute not merely an interpolation between the corresponding Turán-type and Dirac-type results, but exhibit other interesting phenomena.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.