Abstract
In manufacturing industry, finding an orientation for a mold that eliminates surface defects and ensures a complete fill after termination of the gravity casting process is an important and difficult problem. We study the problem of determining a favorable position of a mold (modeled as a polyhedron) such that, when it is filled, no air pockets and ensuing surface defects arise. Given a polyhedron in a fixed orientation, we present a linear time algorithm that determines whether the mold can be filled from that orientation without forming air pockets. We also present an algorithm that determines the most favorable orientation for a polyhedral mold in O( n 2) time. A reduction from a well-known problem indicates that improving the O( n 2) bound is unlikely for general polyhedral molds. We relate fillability to some well known classes of polyhedra. For some of these classes of objects, an optimal direction of fillability can be determined in linear time. Finally, for molds that satisfy a local regularity condition, we give an improved algorithm that runs in time O(nk log 2 n log log( n k )) , where k is the number of venting holes needed to avoid air pockets in an optimal orientation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.