Abstract

We present a process for the void-free filling of sub-100 nm trenches with copper or copper-manganese alloy by chemical vapor deposition (CVD). Conformally deposited manganese nitride serves as an underlayer that initially chemisorbs iodine. CVD of copper or copper-manganese alloy releases the adsorbed iodine atoms from the surface of the manganese nitride, allowing iodine to act as a surfactant catalyst floating on the surface of the growing copper layer. The iodine increases the growth rate of the copper and manganese by an order of magnitude. As the iodine concentrates near the narrowing bottoms of features, void-free, bottom-up filling of CVD of pure copper or copper-manganese alloy is achieved in trenches narrower than 30 nm with aspect ratios up to at least 5:1. The manganese nitride films also show barrier properties against copper diffusion and enhance adhesion between copper and dielectric insulators. During post-deposition annealing, manganese in the alloy diffuses out from copper through the grain boundaries and forms a self-aligned layer that further improves adhesion and barrier properties at the copper/insulator interface. This process provides nanoscale interconnects for microelectronic devices with higher speeds and longer lifetimes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.