Abstract

Miocene rhyolitic volcanism of eastern Oregon, USA, can be divided into two main episodes. Mantle plume upwelling is thought to have generated Columbia River Basalt Group (CRBG) lavas and coeval >16.5−15 Ma silicic volcanism trending north−south from northeast Oregon to northern Nevada. Rhyolite volcanism of the 12−0 Ma High Lava Plains province has been ascribed to either buoyancy-driven westward plume spreading or to slab rollback and mantle convection spanning from southeast Oregon to Newberry Volcano to the west. The apparent ca. 15−12 Ma eruptive hiatus suggests that rhyolites of these provinces were a product of separate processes, yet this gap was based on incomplete data. The lack of data on ∼33 of the total ∼50 rhyolitic eruptive centers in the area where the two provinces overlap (117−119°W, 43−44°N) yields only tenuous relationships between these two provinces. We acquired 40Ar/39Ar ages for 29 previously unanalyzed rhyolite centers that confirm the existence of a rhyolitic eruptive episode concurrent with CRBG flood basalt volcanism. Rhyolite eruptions gradually initiated at ca. 17.5 Ma, and our new ages indicate that peak intensity of the first eruptive episode occurred between 16.3 Ma and 14.4 Ma. We refine the ca. 15−12 Ma rhyolitic eruptive hiatus to 14.4−12.1 Ma, where strong recommencement of rhyolite eruptions began with Beatys Butte at 12.05 Ma. We find two prominent fluxes in rhyolitic eruptive activity after 12.1 Ma as opposed to one continuous, age-progressive trend, at 12.1−9.6 Ma and 7.7−5.1 Ma, which are separated by an ∼2 m.y. period of decreased rhyolite volcanism. Rhyolite eruptions were scarce after 5.1 Ma, at which point most eruptions were associated with Newberry Volcano. Periodicity of rhyolite volcanism along the High Lava Plains demands more punctuated basalt inputs than what continuous partial melting from west-spreading plume material should generate. Our new data suggest that regional rhyolite eruptions are a series of episodic events related to the arrival and storage of mafic mantle magmas. Paucity in rhyolite eruptions from 14.4 Ma to 12.1 Ma is related to decreased flux of CRBG flood basalt magmas at ca. 15 Ma. Strong recommencement of rhyolite volcanism at 12.1 Ma is related to continued Northwest Basin and Range extension and a peak rotation rate of Siletzia affecting regional lithosphere weakened by CRBG volcanism. Waning rhyolitic eruptive activity from ca. 9.6 Ma to 7.7 Ma reflects a regional transition in the primary mode of accommodation of extension from Northwest Basin and Range normal faulting to extension and shearing of the Brothers Fault Zone. Rhyolite volcanism between 7.7 Ma and 5.1 Ma was driven by continued regional extension in an area less affected by CRBG magmatism. Post-5.1 Ma rhyolite eruptions occurred within crust not influenced by CRBG magmatism but impacted by both regional extension and the Cascadia subduction zone.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call