Abstract
The two-dimensional Hubbard model in the superconducting d-wave phase has been solved within the Composite Operator Method (COM) in the two-pole approximation [1]. The unknowns of the theory have been computed exploiting the operatorial relations, dictated by the Pauli principle, existing between the composite operators belonging to the basis. Such a procedure has also allowed to correctly fix the Hilbert space of the problem avoiding to average on unphysical states and permitting to obtain a very good qualitative agreement with the experimental results available in the literature as regards the phase diagram in the T–n plane. Given such an encouraging result, in this short manuscript, we have analyzed the filling and temperature dependence of the static and uniform spin susceptibility, as obtained by means of the COM within a one-loop-like approximation, and we have compared them to the experimentally observed ones for single-layer high-Tc cuprate superconductors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.