Abstract

The use of Type 16-8-2 filler metal was examined for application in structural welds on 304H and 347H stainless steels for high-temperature service applications and compared to welds with matching filler metals 308H and 347, respectively. Microstructural stability during elevated temperature expo-sure, weld metal impact properties, and susceptibility to stress-relief cracking were examined. It was found that the lean composition and low ferrite (~ 2 Ferrite Number [FN]) in 16-8-2 weld metal provide high resistance to intermetallic phase formation. No hot cracking was observed despite the low ferrite level. The 16-8-2 weld metals displayed superior toughness as compared to the matching filler metal welds, especially after longer elevated-temperature exposure. Experimental evidence for some martensite transformation in aged 16-8-2 weld metal upon cooling to ambient temperature was presented and explained an increase in magnetic response (as FN) after postweld heat treatment at 1300˚F (705˚C). None of the tested weld metals failed by stress-relief cracking mechanisms under the applied test conditions. The 16-8-2 filler metal welds exhibited significantly lower levels of stress relief during high-temperature exposure and significantly high-er tensile strength after high-temperature hold as compared to the matching filler metal welds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call