Abstract

AbstractIn this work, we describe the “in situ” synthesis of “all‐acrylic” copolymer (n‐butyl acrylate‐co‐methyl methacrylate)/clay materials at different low contents of raw and modified Montmorillonite (1–4 wt % versus monomer). The cationic 2,2′ azobis‐(amidinopropane)dihydrochloride initiator was used to modified the clay by cation exchange in combination with the N‐tert‐butyl‐N‐[1‐diethylphosphono‐(2,2‐dimethylpropyl)] (SG1) nitroxide to synthesize the polymer/clay nanocomposite via nitroxide mediated controlled radical polymerization. All synthesized materials are characterized by proton nuclear magnetic resonance, size exclusion chromatography, thermogravimetric analysis and differential scanning calorimetry techniques. The thermo‐mechanical properties of the synthesized materials are also reported. The results show that a decrease in molar masses and/or slight changes in molar compositions of poly (n‐butyl acrylate‐ co‐methyl methacrylate)/clay systems can be balanced by clay loading in polymer matrix, and consequently compensated or masked clay effects on physical properties of obtained materials. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call