Abstract

We have revisited the general constructing schemes for a large family of stable hollow boron fullerenes with 80 + 8n (n = 0, 2, 3, ...) atoms. In contrast to the hollow pentagon boron fullerenes with 12 hollow pentagons, the stable boron fullerenes constitute 12 filled pentagons and 12 additional hollow hexagons, which are more stable than the empty pentagon boron fullerenes including the "magic" B80 buckyball. On the basis of results from first-principles density-functional calculations, an empirical rule for filled pentagons is proposed along with a revised electron counting scheme to account for the improved stability and the associated electronic bonding feature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.