Abstract

AbstractIn this work we propose a Filippov‐type lemma for the differential inclusion where is a given multifunction and μ is a finite Borel signed measure on [0, T] (possibly atomic). By a solution of (0.1) we mean a function such that and where is a μ‐integrable function such that for μ‐almost every and stands for either (0, t] for each or [0, t). Such setting leads to at least two nonequivalent notions of a solution to (0.1) and therefore we formulate two different Filippov‐type inequalities (Theorems 2.1 and 2.2). These two concepts coincide in case of the Lebesgue measure. The purpose of our considerations is to cover a class of impulsive control systems, a class of stochastic systems and differential systems on time scales.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.