Abstract

Three-dimensional filaments of quasi-geostrophic potential vorticity are generic features of atmospheric and oceanic flows. They are often generated during the strong interactions between three-dimensional quasi-geostrophic vortices. They contribute to a direct cascade of enstrophy in spectral space. These filaments correspond to shear zones. Therefore they may be sensitive to shear instabilities akin to the Kelvin–Helmholtz instability of the classical two-dimensional vorticity strip. They are, however, often subjected to a straining flow induced by the surrounding vortices. This straining flow affects their robustness. This paper focuses on a simplified model of this situation. We consider the effect of a pure strain on a three-dimensional filament of uniform quasi-geostrophic potential vorticity. We first consider a quasi-static situation where the strain, assumed small, only affects the cross-sectional shape of the filament, but not the velocity field. We address the linear stability of the filament in that context and also show examples of the filament's nonlinear evolution. We then consider the linearised dynamics of the filament in pure strain. In particular we focus on the maximum perturbation amplification observed in the filament. We conclude that small to moderate strain rates are efficient at preventing a large perturbation growth. Nonlinear effects can nevertheless leads to the roll-up of weakly strained filaments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call