Abstract

The bacteriophage M13 is a 1 μm long filament consisting of a circular single-stranded DNA loop firmly held within a tubular protein capsid. We report here that exposure to a chloroform-water interface initiates a 20 fold contraction of each filament into a hollow protein sphere. In these 0.04 μm diameter particles, termed M13 “spheroids,” two thirds of the DNA is apparently extruded through a hole in the wall of the spheroid; the portion of DNA remaining inside the shell centers about the origins of M13 DNA replication. These results suggest that the filament, upon exposure to a membrane environment, undergoes an ordered change whereby the DNA is released into the cell and the coat protein is changed to a form more easily solubilized by the membrane lipids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.