Abstract

Tunable intense multicolored femtosecond sidebands are generated in a 0.1 mm-thick sapphire plate based on cascaded four-wave mixing (CFWM) by using a spectrally broadened pulse from filamentation in air and a 806 nm fundamental pulse from a Ti:sapphire laser amplifier. By using the filamentation to extend the spectrum of one incident pulse, the experimental setup is compact and inexpensive. Furthermore, the spectra of the sidebands can be conveniently tuned by varying the input power for the filamentation generation, and even the second-order frequency upconversion sideband can maintain its output power higher than 0.2 mW during the process of tuning. The generated sidebands are observed with a spectral range from 500 to 950 nm, and each spectrum has a full width half maximum (FWHM) bandwidth above 37 nm, which have potential applications in ultrafast spectroscopy and microscopy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.