Abstract

Measured filament velocities in the DIII-D tokamak are compared against theoretical scalings, finding that the latter often represents an upper limit on experimental velocity distributions with most filaments possessing lower velocity. Filament spin from internal E × B drift is experimentally demonstrated to alter filament radial velocity. A critical spin velocity, where filament radial velocity peaks, is observed and corresponds to approximately 5 km/s. This transition is corroborated using a less direct measure of filament spin in the form of a temperature ratio. These techniques are combined to find that the critical spin velocity closely aligns with transport times along and across filaments becoming comparable. The normalized filament size distribution is consistent with the most stable size as dictated by Kelvin–Helmholtz and curvature-driven instabilities. Overall, the findings suggest filament stability and spin alter filamentary transport that may threaten the integrity of first walls in fusion devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call