Abstract

Large scale filaments, with lengths that can reach tens of Mpc, are the most prominent features in the cosmic web. These filaments have only been observed indirectly through the positions of galaxies in large galaxy surveys or through absorption features in the spectra of high redshift sources. In this study we propose to go one step further and directly detect intergalactic medium filaments through their emission in the HI 21cm line. We make use of high resolution cosmological simulations to estimate the intensity of this emission in low redshift filaments and use it to make predictions for the direct detectability of specific filaments previously inferred from galaxy surveys, in particular the Sloan Digital Sky Survey. Given the expected signal of these filaments our study shows that HI emission from large filaments can be observed by current and next generation radio telescopes. We estimate that gas in filaments of length $l \gtrsim$ 15 $h^{-1}$Mpc with relatively small inclinations to the line of sight ($\lesssim 10^\circ$) can be observed in $\sim40-100$ hours with telescopes such as GMRT or EVLA, potentially providing large improvements over our knowledge of the astrophysical properties of these filaments. Due to their large field of view and sufficiently long integration times, upcoming HI surveys with the Apertif and ASKAP instruments will be able to detect large filaments independently of their orientation and curvature. Furthermore, our estimates indicate that a more powerful future radio telescope like SKA-2 can be used to map most of these filaments, which will allow them to be used as a strong cosmological probe.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.