Abstract

Filament-assisted pyrolytic growth of diamond films on (100) Si wafers was investigated in an attempt to grow quality layers for semiconductor applications. The work was carried out in hydrogen ambient under a reduced pressure condition of about 100 torr (133, 322×102 Pa). Using isopropanol and methanol as carbon source chemicals, the growth process and film properties were characterized as functions of reactant concentration, filament and substrate temperature, reaction pressure and the total gas flow rate. Diamond films of good quality were grown under condition of low source concentration and small flow rate. However, the growth rates were generally slow. The films were polycrystalline. The filament and substrate temperatures were fairly critical to the nucleation and growth processes. The substrate surface finishing from diamond paste polishing predominated the nucleation site and grain size of the deposits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.