Abstract

Proper optimization of a photonic structure for sensing applications is of extreme importance for integrated sensor design. Here we discuss on the definition of suitable parameters to determine the impact of photonic structure designs for evanescent-wave absorption sensors on the achievable resolution and sensitivity. In particular, we analyze the most widespread quantities used to classify photonic structures in the context of sensing, namely the evanescent-field ratio (or evanescent power factor) and the confinement factor Γ. We show that, somewhat counterintuitively, the confinement factor is the only parameter that can reliably describe the absorption of the evanescent-field in the surrounding medium, and, by quantifying the discrepancy between the two parameters for a set of realistic photonic structures, we demonstrate that using the evanescent-field ratio can lead to a wrong classification of the performance of different structures for absorption sensing. We finally discuss the most convenient simulation strategies to retrieve the confinement factor by FEM simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.