Abstract

The water and ethylene glycol based stable rGO/nanodiamond hybrid nanofluids were prepared and used for thermophysical properties analysis. The thermophysical properties were measured experimentally at various particle loadings from 0.2% to 1.0% and various temperatures ranging from 20 to 60 °C. From the measured thermophysical properties the figures-of-merit were analyzed by assuming constant heat flux and turbulent boundary conditions by using different models, and also by assuming the hybrid nanofluids flows through a tube. Results indicate that the thermal conductivity of water and ethylene glycol based hybrid nanofluids at Φ = 1.0% vol. is enhanced about 27.87% and 18.8% at 60 °C; viscosity of water and ethylene glycol based hybrid nanofluids at Φ = 1.0% vol. is also enhanced by 72.15% and 86.62% compared to their base fluids at 20 °C. The density is also increased with an increase of particle loadings, whereas, the specific heat is decreased with a rise of particle loadings. Experimental thermophysical properties are fitted into regression equations by using multi linear regression method. The figures-of-merit of all the prepared hybrid nanofluids show its value is less than one under the used particle loadings and temperatures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call