Abstract

Some naturally camouflaged objects are invisible unless they move; their boundaries are then defined by motion contrast between object and background. We compared the visual detection of such camouflaged objects with the detection of objects whose boundaries were defined by luminance contrast. The summation field area is 0.16 deg2 , and the summation time constant is 750 msec for parafoveally viewed objects whose boundaries are defined by motion contrast; these values are, respectively, about 5 and 12 times larger than the corresponding values for objects defined by luminance contrast. The log detection threshold is proportional to the eccentricity for a camouflaged object of constant area. The effect of eccentricity on threshold is less for large objects than for small objects. The log summation field diameter for detecting camouflaged objects is roughly proportional to the eccentricity, increasing to about 20 deg at 32-deg eccentricity. In contrast to the 100:1 increase of summation area for detecting camouflaged objects, the temporal summation time constant changes by only 40% between eccentricities of 0 and 16 deg.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call