Abstract

Frac hits were once a painful cost of doing business for Abraxas Petroleum. But today, the San Antonio, Texas-based shale producer has softened the blows dealt by this widespread and challenging problem. Its approach, called “active well defense,” has been put to the test amid the rolling hills of the company’s North Fork oil field in McKenzie, North Dakota. “Necessity is the mother of invention—and that’s our story here,” said Peter Bommer, vice president of engineering at Abraxas, who noted that the driver of its strategy was not production declines, as it has been for others. Instead, active well defense is designed to prevent temporary, yet costly, production stoppages caused by unabated frac hits filling parent wells with sand. The company starts by injecting produced water at low pressures into older, parent wells. It flows down miles of wellbore and into the formation’s partially depleted fracture networks where it has proven to prevent the damage often caused by high-pressure hydraulic fracturing of new child wells—known as frac hits. Active well defense relies on sporadic injections to reinforce the preloaded water. To do this, Abraxas has partnered with a technology vendor Abra Controls, whose custom communications network gives engineers “real-time pressure monitoring so we can watch the wellhead pressures in the parents, and when we start to see interference, we start pushing back on it,” Bommer said. Active well defense is now used across Abraxas’ infill program in its 3,300-acre development targeting the Bakken and Three Forks shale plays. Its genesis and evolution are covered in two technical papers, the latest of which was published at the start of the year (SPE 184851 and SPE 189860). Renewed Trend Examples of similar strategies have recently emerged from other major North American plays. They include BHP Billiton’s “preloads” in the Eagle Ford Shale of Texas and Canbriam Energy’s “pump-ins” in the Montney Shale of Alberta. Similar tactics are being tested in the Permian Basin and the Anadarko Basin. This trend sits on one side of the well-defense spectrum, while on the other are the more capital-intensive projects known as cube developments that drill and complete a dozen or more wells in quick succession to avoid the downsides of reservoir depletion. Published results on injection-based well defense are encouraging, but it remains unclear whether they will scale up to stem concerns over the shale sector’s ability to sustain record output in the face of falling productivity of new child wells. These operations are distinct from refracturing, as both Abraxas and BHP emphasize that the injections use pressures that do not open new fractures, or affect existing ones much. Injection-based defense is not stopping frac hits, said Marcus Bayne, a fracturing supervisor with Abraxas. “But if we can interfere with the interference, then we can have the fluid we’re injecting act as a shock absorber, or a diffuser, so we don’t push solid material into the parent wellbore.”

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call