Abstract
Despite the importance of aggression in the behavioral repertoire of most animals, relatively little is known of its proximate causation and control. To take advantage of modern methods of genetic analysis for studying this complex behavior, we have developed a quantitative framework for studying aggression in common laboratory strains of the fruit fly, Drosophila melanogaster. In the present study we analyze 73 experiments in which socially naive male fruit flies interacted in more than 2,000 individual agonistic interactions. This allows us to (i) generate an ethogram of the behaviors that occur during agonistic interactions; (ii) calculate descriptive statistics for these behaviors; and (iii) identify their temporal patterns by using sequence analysis. Thirty-minute paired trials between flies contained an average of 27 individual agonistic interactions, lasting a mean of 11 seconds and featuring a variety of intensity levels. Only few fights progressed to the highest intensity levels (boxing and tussling). A sequential analysis demonstrated the existence of recurrent patterns in behaviors with some similarity to those seen during courtship. Based on the patterns characterized in the present report, a detailed examination of aggressive behavior by using mutant strains and other techniques of genetic analysis becomes possible.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.