Abstract

Discovered six decades ago, transposons are known to selfishly multiply within and between chromosomes. Although they may play a creative role in building new functional parts of the genome, transposons usually cause insertional mutagenesis and/or turn nearby genes on or off. To maintain genome integrity, cells use a variety of strategies to defend against the proliferation of transposons. A class of small noncoding RNA, discovered seven years ago and called piRNA, is a new player in the war to silence transposons. piRNA is made via two biogenesis pathways: the primary processing pathway and the ping-pong amplification loop. These pathways are critically involved in transposon RNA degradation, DNA methylation, and histone modification machinery that represses transposons. In this review, we briefly introduce transposon-caused genomic instability and summarize our current understanding of the piRNA pathway, focusing on its key function in transposon silencing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call