Abstract

Ant social parasites use chemical warfare to facilitate host colony takeover, which is a critical but recurring step in their life cycle. Many slave-making ants use the secretion of the Dufour gland to manipulate host behaviour during parasitic nest foundation and slave raids. Harpagoxenus sublaevis applies this chemical weapon onto defending Leptothorax host workers, which elicits deadly fights amongst them. Host species are expected to evolve counter-adaptations against this behavioural manipulation and in this study we investigated the geographic structure of this co-evolving trait. We compared the effectiveness of the parasitic gland secretion from different H. sublaevis populations in host colonies from various sites and analysed the occurrence of local adaptation. The two host species L. muscorum and L. acervorum generally showed different responses to the parasites’ chemical weapon: L. acervorum attacked nestmates treated with Dufour gland secretion, while L. muscorum workers fled. Flight, instead of intraspecific fights, is an adaptive host reaction as it results in fewer host fatalities during raids. Beside interspecific host differences, we found a geographic mosaic of host resistance: parasites from a German population strongly manipulated the behaviour of both sympatric Leptothorax populations. Russian or Italian hosts instead did not react with intracolonial aggression, but fled when confronted with the gland secretion of their sympatric parasite. Not only variation in host resistance explains differences in the effectiveness of the parasitic gland secretion but also interpopulational differences in its chemical composition, which were revealed by gas chromatography and mass spectrometry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call