Abstract
We monitored the kinetics of grazer‐induced responses in the marine dinoflagellate Alexandrium tamarense. Chemical cues from each of three calanoid copepods (Calanus sp., Centropages typicus, and Acartia tonsa) induced increased toxicity and suppressed chain formation in A. tamarense. Both chemical and morphological responses augmented over 3 d. Toxicity subsequently averaged 299% higher than controls, and average biovolume 24% lower than controls because of suppression of chain formation in grazed treatments. Grazer‐induced toxicity returned to control levels after approximately 11 d, equivalent to five cell divisions, and average biovolume returned to control levels within 1 to 4 d (one to two cell divisions). This suggests that dinoflagellates simultaneously reduce grazer encounter rates and increase chemical defense levels in the presence of copepod grazers. Media replacement experiments showed that the inducing cue(s) attenuate rapidly in seawater, which allows A. tamarense to adjust resource allocation to grazer‐induced responses to follow fluctuations in grazer density. Grazer‐induced responses, however, develop too slowly to be accounted for in short‐term grazing experiments with laboratory cultures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.