Abstract
The question of how soft polymers slide against hard surfaces is of significant scientific interest, given its practical implications. Specifically, such systems commonly show interesting stick-slip dynamics, wherein the interface moves intermittently despite uniform remote loading. The year 2021 marked the 50th anniversary of the publication of a seminal paper by Adolf Schallamach (Wear, 1971), which first revealed an intimate link between stick-slip and moving detachment waves, now called Schallamach waves. We place Schallamach's results in a broader context and review subsequent investigations of stick-slip, before discussing recent observations of solitary Schallamach waves. This variant is not observable in standard contacts so that a special cylindrical contact must be used to quantify its properties. The latter configuration also reveals the occurrence of a dual wave-the so-called separation pulse-that propagates in a direction opposite to Schallamach waves. We show how the dual wave and other, more general, Schallamach-type waves can be described using continuum theory and provide pointers for future research. In the process, fundamental analogues of Schallamach-type waves emerge in nanoscale mechanics and interface fracture. The result is an ongoing application of lessons learnt from Schallamach-type waves to better understand these latter phenomena. This article is part of the theme issue 'Nanocracks in nature and industry'.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.