Abstract

We propose a fifth-order well-balanced positivity-preserving finite difference alternative WENO (AWENO) scheme with the affine-invariant WENO interpolation based on the Z-type nonlinear weights for the hyperbolic chemotaxis models. By using the techniques of source term reformulation, hydrostatic reconstruction of the interpolated conservative variables and modification of the numerical fluxes, the finite difference discretization is fifth-order and well-balanced. Moreover, the first-order interpolation with the Lax-Friedrichs (LF) flux and a reduced time step for the proposed discretized scheme has been shown to satisfy the density's positivity-preserving (PP) property. Thus, a simple positivity-preserving (PP) limiter conjugating the fifth-order hydrostatic reconstructed flux with the first-order positivity-preserving LF flux is introduced for extreme problems. Meanwhile, this improved approach strictly guarantees well-balanced property at the discrete level. Finally, one-, two-, and three-dimensional numerical examples are given to demonstrate the performance of the proposed AWENO scheme for this class of chemotaxis problems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call