Abstract

Two-quantum variants of two-dimensional electronic spectroscopy (2DES) have previously been used to characterize multi-exciton interactions in molecules and semiconductor nanostructures though many implementations are limited by phasing procedures or non-resonant signals. We implement 2DES using phase-cycling to simultaneously measure one-quantum and two-quantum spectra in colloidal CdSe quantum dots. In the pump-probe geometry, fully absorptive spectra are automatically acquired by measuring the sum of the rephasing and nonrephasing signals. Fifth-order two-quantum spectroscopy allows for direct access to multi-exciton states that may be obscured in excited state absorption signals due to population relaxation or third-order two-quantum spectra due to the non-resonant response.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call