Abstract

We implement an explicit two-loop calculation of the coupling functions and the self-energy of interacting fermions with a two-dimensional flat Fermi surface in the framework of the field theoretical renormalization group (RG) approach. Throughout the calculation both the Fermi surface and the Fermi velocity are assumed to be fixed and unaffected by interactions. We show that in two dimensions, in a weak coupling regime, there is no significant change in the RG flow compared to the well-known one-loop results available in the literature. However, if we extrapolate the flow to a moderate coupling regime there are interesting new features associated with an anisotropic suppression of the quasiparticle weight Z along the Fermi surface, and the vanishing of the renormalized coupling functions for several choices of the external momenta.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.