Abstract

Salt-affected soil maps for Northeast Thailand focus on the percentage of salt crusts. Investigation was done to find the field-scale spatial variability of the electrical conductivity of saturation extract (ECe) in salt-affected areas (percentage salt crusts: very severely = class 1; severely = class 2, and moderately = class 3). Two study sites were selected for each class (n = 6). Soil samples (n = 100) were collected at each site using stratified, systematic, unaligned sampling, and analyzed for ECe. Variations in ECe were assessed using basic statistics and geostatistics. At the field-scale, in every class, the best-fit semivariogram model generated was satisfactory (R2 > 0.8). Interpretation from the relevant model parameters (i.e., nugget, sill, and effective range), together with the interpolated (kriged) maps, demonstrated that the characteristics of spatial variability of soil ECe were inconsistent, even between different sites of the same salt-affected soil class. In general, various degrees of small-scale variation were observed, very high variation of ECe was common, spatial dependence was strong to moderate, while the spatial distribution pattern was in distinctive patches. The size of patches depended on the effective range at each site. This study also revealed that the class 1 areas were entirely, very strongly saline (ECes range, 56.70 and 433.00 dS·m-1), whereas the areas of class 3 were non-saline to moderately saline (range, 0.11 - 5.26 dS·m-1). Class 2 areas were much more complex; the soils varied from non-saline to very strongly saline (range, 0.16 - 49.00 dS·m-1). Information on the nature and characteristics in the spatial variability of soil ECe is useful for developing strategies for management of salt-affected soils in precision agriculture in this region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.