Abstract

AbstractOur understanding of how mineral nutrition affects productivity and composition of bioenergy crops grown on marginal lands remains fragmented and incomplete despite world‐wide interest in using herbaceous biomass as an energy feedstock. Our aim was to determine switchgrass (Panicum virgatum L.) biomass production and maize (Zea mays L.) grain yield on marginal soils used previously to evaluate the effect of soil phosphorus (P) and potassium (K) fertility on alfalfa (Medicago sativa L.) forage production. Grain yield of maize was reduced on P‐ and/or K‐limited plots that also impaired alfalfa forage yield, whereas switchgrass biomass yields were high even in plots possessing very low available P (4 mg kg–1) and K (< 70 mg kg–1) levels. Linear‐plateau regression models effectively described the relationship of soil test P and K to tissue P and K concentrations, and tissue P and K concentrations accurately predicted removal of P and K in harvest biomass. However, neither soil‐test P and K, nor tissue P and K concentrations were effective as diagnostics for predicting switchgrass biomass yield nor could soil tests and their change with cropping predict nutrient removal. Concentrations of cellulose, hemicellulose, lignin, and ash were not influenced by P and K nutrition. Predicted bio‐ethanol production was closely associated with biomass yield whereas high biomass K concentrations reduced estimated bio‐oil production per hectare by as much as 50%. Additional research is needed to identify diagnostics and managements to meet the bioenergy production co‐objectives of having high yield of biomass with very low mineral nutrient concentrations (especially K) while sustaining and improving the fertility of marginal soils.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.