Abstract

The fields at a finite conducting 2-D wedge are studied by means of the surface admittance operator, and compared to the case of a perfect conductor. This technique, applied to a number of numerical examples, allows a thorough investigation of the singular behavior of the fields near the edge, including nonsingular fields such as the longitudinal current distribution. Special attention is devoted to the validity of the quasi-TM approximations, when edge singularities are taken into account. The studied field properties lead to the formulation of an approximative local surface impedance for conductors, and are finally used to show how some differences in the resistive and inductive behavior of conductors with a different geometry are due to edge effects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call