Abstract

We report a field-portable lensfree on-chip holographic microscope that can image confluent color samples, with sub-micron resolution over a wide field-of-view (FOV) of ~ 20 mm2. This color microscope is suitable for field use as it weighs less than 150 grams and its dimensions are smaller than 17×6×5 cm3. The unique design of this lensfree microscope utilizes three computational methods, namely: (i) pixel super-resolution to achieve sub-micron resolution with unit magnification over a large FOV, (ii) multi-height phase-recovery that enables imaging of confluent samples, and (iii) YUV color space averaging that mitigates `rainbow' like color artifacts, typically observed in holographic imaging. To demonstrate the performance of our computational color microscope, we imaged a 1951 USAF test chart and Papanicolaou (Pap) smear samples. This holographic color microscope with its light-weight, cost-effective design, and wide FOV could be useful for tele-pathology applications including for example diagnosis of cervical cancer or malaria.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.