Abstract

The origin of the electric field-induced strain in the polycrystalline ceramic 0.92Bi1/2Na1/2TiO3–0.06BaTiO3–0.02K1/2Na1/2NbO3was investigated usingin situhigh-resolution X-ray and neutron diffraction techniques. The initially existing tetragonal phase with pseudocubic lattice undergoes a reversible phase transition to a significantly distorted rhombohedral phase under electric field, accompanied by a change in the oxygen octahedral tilting froma0a0c+toa−a−a−and in the tilting angle. The polarization values for the tetragonal and rhombohedral phases were calculated based on the structural information from Rietveld refinements. The large recoverable electric field-induced strain is a consequence of a reversible electric field-induced phase transition from an almost nonpolar tetragonal phase to a ferroelectrically active rhombohedral phase.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call