Abstract

We show theoretically that a short specific elliptically polarized laser pulse driving an asymmetric top molecule can induce postpulse revivals of three-dimensional (3D) alignment. By choosing the field ellipticity resulting in the best compromise between the alignment of two molecular axes, we demonstrate that efficient 3D alignment can be achieved at low temperature. In the experiment, the field-free alignment of moderately cool ethylene molecules is probed by using a technique based on the optical Kerr effect. Control of 3D field-free alignment opens the door to a large range of applications in chemistry as well as in molecular optics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.