Abstract

The low conductivity of separation electrolytes employed in nonaqueous capillary electrophoresis (NACE) limits the use of on-line sample concentration or stacking by field enhancement. Herein, micelle-to-solvent stacking (MSS) was performed by the simple injection of a micellar solution plug prior to electrokinetic injection of sample prepared under field-enhanced stacking conditions (known as field-enhanced sample injection, FESI). The proposed approach allowed a 214–625-fold improvement in peak signals for targeted anticancer drugs (e.g., tamoxifen) and its major metabolites in NACE using 100% methanol-based separation electrolyte that comprised of 7.5mM deoxycholic acid sodium salt, 15mM acetic acid and 1mM 18-crown-6. These improvements yielded tamoxifen and its metabolites with 2–5 times better stacking efficiency as compared to those obtained without micellar solution injection or FESI only. This is comparable to the results typically achieved when FESI is combined with isotachophoresis (electrokinetic supercharging). The FESI-MSS-NACE was tested for the measuring levels of target drugs in plasma. The analytical figures of merit are also reported.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.