Abstract

We demonstrate that an external terahertz (THz) field enables the formation of interference between two distinct Auger pathways leading to the same final ionic state. The kinetic energy of Auger electrons ejected from either of two spin-orbit split one-hole states of magnesium cations is recorded. In the presence of the THz field, a clear oscillatory structure in the Auger spectrum emerges, which we find to be in very good agreement with an analytical model based on perturbation theory. For this interference to occur, the THz field has to chirp the energy of both Auger electrons and photoelectrons simultaneously, in order to create states with indistinguishable quantum properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.