Abstract
High temperature vulcanized (HTV) silicone rubber (SiR), due to its excellent electrical insulation, elasticity and temperature resistance, is used in cable accessories for HVDC cables. The space charge, generated under dc stress in SiR, would distort the local electric field, further influencing the characteristics of partial discharge and accelerating the insulation aging. This paper tried to modify the space charge behaviors of HTV SiR composites by incorporating silicon carbide (SiC) particles into the polymer matrix with the filler content of 10, 30, 50, 100 wt%. The effects of the SiC particle content on the field-dependent conductivity and the space charge behaviors of HTV SiR were studied. The conductivities under different electric fields were measured by a three-electrode system at room temperature and the space charge behaviors were observed by the pulsed electro-acoustic (PEA) method. The results indicated that the conductivity of SiR/SiC composites was a nonlinear function of electric field when the content exceeds 30 wt%. With the increase of filler content, the threshold field for nonlinear conductivity decreased and the nonlinear coefficient increased. Meanwhile, the amount of space charges was dramatically reduced. It is suggested that the SiR/SiC composites with nonlinear conductivity can improve the dc conductivity under high electric field, thus raising the carrier mobility and suppressing the accumulation of space charge.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Dielectrics and Electrical Insulation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.