Abstract

We investigate the behavior of a magnetorheological (MR) fluid annulus, bounded by a nonmagnetic fluid and confined in a Hele-Shaw cell, under the simultaneous effect of in-plane, external radial and azimuthal magnetic fields. A second-order mode-coupling theory is used to study the early nonlinear stage of the pattern-forming dynamics. We examine changes in the morphology of the MR fluid annular structure as a function of its magnetic-field-tunable rheological properties, as well as the combined magnetic field's intensities, and thickness of the ring. Our weakly nonlinear perturbative results show that, depending on the system control parameters, the MR fluid annulus adopts various stationary shapes. These equilibrium annular structures present slightly bent, asymmetric fingered protrusions which may emerge on the inner, outer, or even on both boundaries of the magnetic fluid ring. On top of these morphological changes, we find that the resulting permanent shape patterns rotate with a well defined angular velocity. We focus on analyzing how the overall shape of the fingered patterns, in particular their sharpness and asymmetric form, as well as the number of resulting fingers are impacted by the magnetic-field-dependent yield stress of the MR fluid annulus. The influence of the magnetically controlled rheological properties of the MR fluid on the angular velocity of the rotating annulus is also scrutinized.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call