Abstract
Click-through rate (CTR) prediction plays an important role in computational advertising. Models based on degree-2 polynomial mappings and factorization machines (FMs) are widely used for this task. Recently, a variant of FMs, field-aware factorization machines (FFMs), outperforms existing models in some world-wide CTR-prediction competitions. Based on our experiences in winning two of them, in this paper we establish FFMs as an effective method for classifying large sparse data including those from CTR prediction. First, we propose efficient implementations for training FFMs. Then we comprehensively analyze FFMs and compare this approach with competing models. Experiments show that FFMs are very useful for certain classification problems. Finally, we have released a package of FFMs for public use.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.