Abstract

Lithium metal batteries are deemed as an optimal candidate for the next generation of durable energy storage devices. However, the growth of lithium dendrite and significant volume expansion pose as obstacles that impede the application of lithium metal batteries. In this work, a functional copper current collector was designed by coating it with Co-doped ZnO (Co/ZnO) to enhance the lithiophilicity through local electric fields and built-in magnetic fields induced by the ferromagnetic material. The incorporation of Co not only induces a local electric field and thus accelerating electron transfer, but also imparts the ferromagnetic behavior to ZnO, resulting in an internal magnetic field to regulate the dynamic trajectory. Profiting from the above advantages, the symmetric cells have excellent cycle stability in 1 mA cm-2 and 1 mAh cm-2 , maintaining ultra-low voltage for over 2000 h. This study provides a realizable pathway for next-generation current collector of copper modification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.